Aloha :)
Dazu betrachte zunächst:$$\cos(2\varphi)=\frac{\overbrace{\cos^2\varphi-\sin^2\varphi}^{=\cos(2\varphi)}}{\underbrace{\cos^2\varphi+\sin^2\varphi}_{=1}}=\frac{1-\frac{\sin^2\varphi}{\cos^2\varphi}}{1+\frac{\sin^2\varphi}{\cos^2\varphi}}=\frac{1-\tan^2\varphi}{1+\tan^2\varphi}$$
Wende das mit \(\varphi=\frac x2\) auf den Integranden an:$$I=\int\frac{1}{5+\cos x}\,dx=\int\frac{1}{5+\frac{1-\tan^2\frac x2}{1+\tan^2\frac x2}}\,dx=\int\frac{1+\tan^2\frac x2}{\left(5+5\tan^2\frac x2\right)+\left(1-\tan^2\frac x2\right)}\,dx$$$$\phantom I=\int\frac{1+\tan^2\frac x2}{6+4\tan^2\frac x2}\,dx=\frac14\int\frac{1+\tan^2\frac x2}{\frac32+\tan^2\frac x2}\,dx$$
Wir substituieren nun:$$t\coloneqq\tan\frac x2\quad\text{mit}\quad\frac{dt}{dx}=\frac12\left(1+\tan^2\frac x2\right)\quad\text{bzw.}\quad\left(1+\tan^2\frac x2\right)\,dx=2\,dt$$
Nebenrechnung für die Ableitung der Tangens-Funktion:$$\small\left(\tan x\right)'=\left(\frac{\overbrace{\sin x}^{=u}}{\underbrace{\cos x}_{=v}}\right)'=\frac{\overbrace{\cos x}^{=u'}\cdot\overbrace{\cos x}^{=v}-\overbrace{\sin x}^{=u}\cdot\overbrace{\left(-\sin x\right)}^{=v'}}{\underbrace{\cos^2 x}_{=v^2}}=1+\tan^2x$$Mit der Kettenregel ist dann klar:$$\left(\tan\frac x2\right)'=\frac12\left(1+\tan^2\frac x2\right)$$
Damit erhalten wir das Standardintegral: \(\int\frac{a}{a^2+x^2}=\arctan\frac xa+C\):$$I=\frac14\int\frac{2\,dt}{\frac32+t^2}=\frac12\int\frac{1}{\frac32+t^2}\,dt=\frac12\cdot\sqrt{\frac23}\cdot\int\frac{\sqrt{\frac32}\,dt}{\frac32+t^2}=\frac{1}{\sqrt6}\arctan\left(\frac{t}{\sqrt{\frac32}}\right)+C$$
Jetzt muss du nur noch das \(x\) zurück substituieren und erhältst:$$\int\frac{1}{5+\cos x}\,dx=\frac{1}{\sqrt6}\arctan\left(\sqrt{\frac23}\,\tan\frac x2\right)+C$$