0 Daumen
447 Aufrufe

Aufgabe:

Wie lautet der Konvergenzradius dieser komplexen Reihe?

\( \sum\limits_{n=1}^{\infty}{} \) \( \frac{(2n)!}{2^n*n!^2} \)*\( z^{n} \)


Problem/Ansatz:

Wurzel- oder Quotientenkriterium

Avatar von

a_n / a_(n+1) konvergiert gegen 1/2

Kannst du das genauer erklären?

Also das Quotientenkriterium?

Hallo

ausprobieren ginge hier doch schneller als fragen und auf Antwort warten. dazu kommt wie behandelst du \( \sqrt[n]{n!} \)

lul

Ich erhalte für |a_n/a_(n+1)|=\( \frac{2(2n)!((n+1)!)^2}{(n!)^2(2(n+1))!} \), und wie kann ich damit weiter machen?

Es ist z.B. \( \frac{(n+1)!}{n!}=n+1\) und \( \frac{(2n)!}{(2n+2)!}=\frac{1}{(2n+1)(2n+2)} \)

Ok danke, dass heißt mit diesen Ergebnissen

folgt =\( \frac{2(n+1)^2}{(2n+1)(2n+2)} \)=\( \frac{n+1}{2n+1} \)

und somit für lim n→∞ |a_n/a_(n+1)|= 1/2

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community