Aloha :)
Willkommen in der Mathelounge... \o/
Der geradlinige Weg \(\vec r_1\) von \((1|-2)\) nach \((0|0)\) ist$$\vec r_1=\binom{1}{-2}+t\cdot\binom{-1}{2}=\binom{1-t}{-2+2t}\quad;\quad t\in[0;1]$$Der geradlinige Weg \(\vec r_1\) von \((0|0)\) nach \((1|2)\) ist$$\vec r_2=t\cdot\binom{1}{2}=\binom{t}{2t}\quad;\quad t\in[0;1]$$
Das gesuchte Integral ist daher:$$I=\int\limits_{(1|-2)}^{(0|0)}f(x;y)\,ds+\int\limits_{(0|0)}^{(1|2)}f(x;y)\,ds$$$$I=\int\limits_0^1f(x=1-t;y=-2+2t)\,\left\|\frac{d\vec r_1}{dt}\right\|\,dt+\int\limits_0^1f(x=t;y=2t)\,\left\|\frac{d\vec r_2}{dt}\right\|\,dt$$$$I=\int\limits_0^1\left(\frac{-2+2t}{2}\right)^2\sqrt{1+(1-t)}\left\|\binom{-1}{2}\right\|\,dt+\int\limits_0^1\left(\frac{2t}{2}\right)^2\sqrt{1+t}\left\|\binom{1}{2}\right\|\,dt$$$$I=\sqrt5\int\limits_0^1(t-1)^2(2-t)^{\frac12}\,dt+\sqrt5\int\limits_0^1t^2(1+t)^{\frac12}\,dt$$
Die Integrale kannst du mit partieller Integration lösen:
$$\begin{array}{c|c|r} & \text{ableiten} & \text{integrieren}\\\hline & & (2-t)^{1/2}\\[1ex]+ & (t-1)^2 & -\frac23(2-t)^{3/2}\\[1ex] - & 2(t-1) & \frac{4}{15}(2-t)^{5/2}\\[1ex]+ & 2 & -\frac{8}{105}(2-t)^{7/2}\end{array}\qquad\begin{array}{c|c|r} & \text{ableiten} & \text{integrieren}\\\hline & & (1+t)^{1/2}\\[1ex]+ & t^2 & \frac23(1+t)^{3/2}\\[1ex] - & 2t & \frac{4}{15}(1+t)^{5/2}\\[1ex]+ & 2 & \frac{8}{105}(1+t)^{7/2}\end{array}$$
Damit gilt:$$I=\sqrt5\left[-(t-1)^2\frac23(2-t)^{3/2}-\frac{8}{15}(t-1)(2-t)^{5/2}-\frac{16}{105}(2-t)^{7/2}\right]_0^1$$$$\phantom I+\sqrt5\left[\frac23t^2(1+t)^{3/2}-\frac{8}{15}t(1+t)^{\frac52}+\frac{16}{105}(1+t)^{7/2}\right]_0^1$$$$\phantom I=\sqrt5\left(-\frac{16}{105}+\frac{44\sqrt2}{105}\right)+\sqrt5\left(\frac{44\sqrt2}{105}-\frac{16}{105}\right)=\frac{88\sqrt2-32}{105}\,\sqrt5$$