Hallöchen zusammen,
ich sitze gerade an folgender Aufgabe:
Betrachten Sie
\(A:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3} \mid x_{1}, x_{2} \in \mathbb{R}, x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \quad V:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3} \mid x_{1}, x_{2} \in \mathbb{R}\right\}\)
Geben Sie an und begründen Sie:
(i) Ist \( A \) in \( \left(\mathbb{R}^{3},\|\cdot\|_{2}\right) \) abgeschlossen?
(ii) Was sind \( \partial A, \operatorname{int}(A) \) und \( \bar{A} \) in \( \left(\mathbb{R}^{3},\|\cdot\|_{2}\right) \) ?
(iii) Ist \( \left(V,\|\cdot\|_{2}\right) \) ein normierter Raum?
(iv) Ist \( A \) in \( \left(V,\|\cdot\|_{2}\right) \) abgeschlossen?
(v) Was sind \( \partial A, \operatorname{int}(A) \) und \( \bar{A} \) in \( \left(V,\|\cdot\|_{2}\right) \) ?
Über Tipps und Ideen würde ich mich sehr freuen!
Vielen Dank schonmal im Voraus:)