Huhu, Ich habe folgende Aufgabe, die mir Probleme bereitet. Ich bin leider sehr unsicher, was das Rechnen mit Normen angeht, daher wäre ich sehr dankbar, wenn mir jemand helfen könnte :)
Text erkannt:
Seien \( \left(X_{1},\|\cdot\|\right) \) und \( \left(X_{2},\|\cdot\|_{2}\right) \) normierte Räume, sowie \( x_{1} \in X_{1} \) und \( x_{2} \in X_{2} \).
(a) Zeigen Sie, dass durch
\( \left\|\left(x_{1}, x_{2}\right)\right\|=\max \left\{\left\|x_{1}\right\|_{1},\left\|x_{2}\right\|_{2}\right\} \)
eine Norm (die sog. Produktnorm) auf dem Produktraum \( X_{1} \times X_{2} \) definiert wird.
(b) Zeigen Sie weiterhin, dass bezüglich der Produktnorm für alle \( \left(x_{1}, x_{2}\right) \in X_{1} \times X_{2} \) und \( \varepsilon>0 \) gilt
\( B\left(\left(x_{1}, x_{2}\right), \varepsilon\right)=B\left(x_{1}, \varepsilon\right) \times B\left(x_{2}, \varepsilon\right) . \)