Text erkannt:
Seien \( V \) ein endlichdimensionaler \( \mathbb{R} \)-Vektorraum und \( G \subseteq \mathrm{GL}(V):=\{f: V \rightarrow V \mid f \) ist linear und bijekt eine endliche Untergruppe. Zeigen Sie, dass es ein Skalarprodukt \( \langle\cdot, \cdot\rangle \) auf \( V \) gibt, so dass alle Elemente von \( G \) Isometrien sind.
Text erkannt:
Seien \( V \) ein endlichdimensionaler \( \mathbb{R} \)-Vektorraum und \( G \subseteq \mathrm{GL}(V):=\{f: V \rightarrow V \mid f \) ist linear und bijekt eine endliche Untergruppe. Zeigen Sie, dass es ein Skalarprodukt \( \langle\cdot, \cdot\rangle \) auf \( V \) gibt, so dass alle Elemente von \( G \) Isometrien sind.
Aufgabe: