Hallo,
ich hoffe mir kann jemand bei dieser Aufgabe weiterhelfen. Ich habe folgende Lösungsansätze, bin mir aber nicht sicher ob sie richtig sind.
Ansätze:
1. Falsch, Der Satz ist an der StelleP(2,1,1) nicht anwendbar da F(2,1,1) = (2,2)'
2. Falsch Df(x1) = -DF(y1,y2)-1*DF(x1)
3. Richtig. Hier wurde die erste Matrix einfach schon invertiert.
4. Falsch, weil 5. richtig. Vorzeichen der Teilfunktionen vertauscht.
5. Richtig. Ich stelle die Teilfunktionen von F(x1,y1,y2) jeweils auf explizit auf y1 und y2 um und setze dann in Df(x1) ein. Gleichzeitig prüfe ich auch F(√2,1,-1)=0, was wahr ist.
6. Richtig: Die Jacobimatrix DF(y) ist nicht invertierbar, wenn die det(Fy)=0 det(Fy)= -2*y1 - 2*y^2. Daher wird sie nur im Punkt P=(0,0) nicht invertiebar.
Danke fürs weiterhelfen! :D
Text erkannt:
- Betrachten Sie die Funktion \( F: \mathbb{R}^{1+2} \rightarrow \mathbb{R}^{2} \) gegeben durch
\( F\left(x_{1}, y_{1}, y_{2}\right)=\binom{\left(x_{1}\right)^{2}-\left(y_{1}\right)^{2}-1}{\left(x_{1}\right)^{2}-\left(y_{2}\right)^{2}-1} \)
Gehen Sie im Folgenden davon aus, dass wir an den jeweiligen Punkten \( \left(x_{1}, y_{1}, y_{2}\right) \) die durch \( F\left(x_{1}, y_{1}, y_{2}\right)=0 \) implizierte Funktion
\( f\left(x_{1}\right)=\binom{y_{1}\left(x_{1}\right)}{y_{2}\left(x_{1}\right)} \)
untersuchen. Welche Aussagen sind wahr?
1. Der Satz über Implizite Funktionen ist an der Stelle \( \left(x_{1}, y_{1}, y_{2}\right)=(2,1,1) \) anwendbar.
2. An allen Punkten \( \left(x_{1}, y_{1}, y_{2}\right) \) an denen die Voraussetzungen des Satzes über die impliziten Funktionen erfüllt sind, ist \( D f\left(x_{1}\right) \) gegeben durch
\( D f\left(x_{1}\right)=\binom{\frac{x_{1}}{2 y_{1}}}{\frac{x_{1}}{2 y_{2}}} \)
3. An allen Punkten \( \left(x_{1}, y_{1}, y_{2}\right) \) die Voraussetzungen des Satzes über die impliziten Funktionen erfüllt sind, ist \( D f\left(x_{1}\right) \) gegeben durch
\( D f\left(x_{1}\right)=-\left(\begin{array}{cc} \frac{-1}{2 y_{1}} & 0 \\ 0 & \frac{-1}{2 y_{2}} \end{array}\right)\binom{2 x_{1}}{2 x_{1}} . \)
4. In der Nähe des Punktes \( \left(x_{1}, y_{1}, y_{2}\right)=(\sqrt{2}, 1,-1) \) ist
\( D f\left(x_{1}\right)=\left(\frac{\frac{-x_{1}}{\sqrt{\left(x_{1}\right)^{2}-1}}}{\frac{x_{1}}{\sqrt{\left(x_{1}\right)^{2}-1}}}\right) . \)
5. In der Nähe des Punktes \( \left(x_{1}, y_{1}, y_{2}\right)=(\sqrt{2}, 1,-1) \) ist
\( D f\left(x_{1}\right)=\left(\frac{\frac{x_{1}}{\sqrt{\left(x_{1}\right)^{2}-1}}}{\frac{-x_{1}}{\sqrt{\left(x_{1}\right)^{2}-1}}}\right) . \)
6. Es gibt nur eine Stelle \( \left(x_{1}^{*}, y_{1}^{*}, y_{2}^{*}\right) \in \mathbb{R}^{3} \) sodass die Jacobimatrix \( D_{y} F\left(x_{1}^{*}, y_{1}^{*}, y_{2}^{*}\right) \) nicht invertierbar ist.