b)
f(x) = b^x
f '(x) = b^x*ln(b)
f ''(x) = ln^2(b)*b^n
f '''(x) = ln^3*b^x
usw.
f ^n = ln^n*b^x
d)
f(x) = (3-2x)^n
f '(x) = n*(3-2x)^(n-1)*(-2)
f ''(x) = n*(n-1)*(3-2x)^(n-2)*(-2)^2
...
f^n = n!*(3-2x)^(n-1)*(-2)^n
c) f(x) = 2^(kx)+x^n = (2^k)^x +x^n
f '(x) = 2^(kx)*ln(2^k) + n*x^(n-1)
f ''(x) = 2^(kx)*ln^2(2^k)
f^n = 2^(kx)*ln^n(2k)