Aufgabe:
Es sei \( V \) ein Vektorraum über einem Körper \( K \) und \( f: V \rightarrow V \) eine lineare Abbildung mit \( f \circ f=f \).
1. Zeigen Sie, dass \( \operatorname{ker} f \) und \( \operatorname{im} f \) zueinander komplementär in \( V \) sind.
2. Wir setzen \( g=\operatorname{id}_{V}-f \). Zeigen Sie, dass auch \( g \circ g=g \) gilt, und \( \operatorname{ker} g=\operatorname{im} f \), im \( g=\operatorname{ker} f \).
Problem/Ansatz:
Verstehe nicht was zu tun ist, normalerweise ergibt in der Gruppentafel f mit f = e, aber das sind ja keine Gruppen. Danke im voraus! Ah stimmt und es gibt einen Ansatz denn ich nutzen soll, nämlich die dimensionsformel: dim v = dim im plus dim ker