Schade das du das nicht genauer sagen kannst. Ok. Dann mache ich das mal:
x^3 + a·x^2 + b·x + c = x^3 - 4·x^2 + 12·x + 5 = 0
x = z - a/3
p = b - a^2/3 = 12 - (-4)^2/3 = 20/3 und
q = 2·a^3/27 - a·b/3 + c = 2·(-4)^3/27 - (-4)·(12)/3 + 5 = 439/27
z^3 + p·z + q = z^3 + 20/3·z + 439/27 = 0
D = (q/2)^2 + (p/3)^3 = ((439/27)/2)^2 + ((20/3)/3)^3 = 8323/108
u = (- q/2 + √D)^{1/3} = (- (439/27)/2 + √(8323/108))^{1/3} = 0.8658067240
v = (- q/2 - √D)^{1/3} = (- (439/27)/2 - √(8323/108))^{1/3} = -2.566649299
z1 = u + v = 0.8658067240 + (-2.566649299) = -1.700842574
x1 = z1 - a/3 = (-1.700842574) - (-4)/3 = -0.3675092406
z2 = - (u + v)/2 + (u - v)/2·√3·i
z2 = - ((0.8658067240) + (-2.566649299))/2 + ((0.8658067240) - (-2.566649299))/2·√3·i
z2 = 0.8504212874 + 2.972594113·i
x2 = z2 - a/3 = (0.8504212874 + 2.972594113·i) - (-4)/3 = 2.183754620 + 2.972594113·i
z2 = - (u + v)/2 - (u - v)/2·√3·i
z2 = - ((0.8658067240) + (-2.566649299))/2 - ((0.8658067240) - (-2.566649299))/2·√3·i
z2 = 0.8504212874 - 2.972594113·i
x2 = z2 - a/3 = (0.8504212874 - 2.972594113·i) - (-4)/3 = 2.183754620 - 2.972594113·i