Aloha :)
Die Darstellung \(y(x)\) hilft dir nicht weiter, sie ist übrigens auch falsch. Die Geschwindigkeit ist die Ableitung des Ortes nach der Zeit. Daher brauchst du die \(x\)- und die \(y\)-Koordinate jeweils in Abhängigkeit von der Zeit \(t\).
Aus den x-Koordinaten der Punkte entnehmen wir:$$x(t=2)=3,2\quad;\quad x(t=4)=6,4\quad;\quad x(t=7)=11,2$$Sie liegen alle auf der Geraden:$$x(t)=\frac85\cdot t$$
Aus den y-Koordinaten der Punkte entnehmen wir:$$y(t=2)=4\quad;\quad y(t=4)=6,1\quad;\quad y(t=7)=7,375$$Sie liegen alle aur einer Parabel:$$y(t)=-\frac18\cdot t^2+\frac95\cdot t+\frac{9}{10}$$
Zum Zeitpunkt \(t\) befindet der Ball also an der Position:$$\vec r(t)=\binom{x(t)}{y(t)}=\left(\begin{array}{c}\frac85\cdot t\\[1ex]-\frac18\cdot t^2+\frac95\cdot t+\frac{9}{10}\end{array}\right)$$
Die \(y\)-Koordinate hat zwei Nullstellen:$$t_{1;2}=\frac{36\pm6\sqrt{41}}{5}\implies t_1\approx-0,483749\quad;\quad t_2\approx14,883749$$Der Ball trifft also zum Zeitpunkt \(t_2\) auf die Tischplatte.
Die Geschwindigkeit am Auftreffpunkt ist nun:$$v=\left\|\frac{d}{dt}\vec r(t_2)\right\|=\left\|\left(\begin{array}{c}\frac85\\[1ex]-\frac14\cdot t_2+\frac95\end{array}\right)\right\|=\left\|\left(\begin{array}{c}1,6\\[1ex]-1,92093725\end{array}\right)\right\|$$$$\phantom v=\sqrt{1,6^2+(-1,92093725)^2}\approx\sqrt{6,25}=2,5$$