Aufgabe:
Um ihre Verkehrsleitsysteme zu verbessern, möchte die Stadt Darmstadt das Verkehrsaufkommen vor dem Darmstadium erfassen. Man misst dabei die Zeiten, die zwischen dem Erscheinen aufeinander folgender Fahrzeuge vergehen. Dabei geht man davon aus, dass diese Zeiten Realisierungen unabhängiger, identisch verteilter Zufallsvariablen \( X_{1}, \ldots, X_{n} \) sind, welche die Dichte
\( f_{\theta}(x)=\left\{\begin{array}{ll} \frac{3}{\theta} x^{2} e^{-\frac{1}{\theta} x^{3}} & \text { falls } x \geq 0 \\ 0 & \text { sonst } \end{array}\right. \)
mit unbekanntem \( \theta>0 \) besitzen.
(i) Geben Sie für Messwerte \( x_{1}, \ldots, x_{n} \) mit \( x_{i}>0 \) für alle \( i \in\{1, \ldots, n\} \) die zugehörige Log-Likelihood-Funktion an.
(ii) Geben Sie den Maximum-Likelihood-Schätzer für \( \theta \) an.
(iii) Bei der Messung ergaben sich die Werte
\( \begin{array}{lllll}1 & 5 & 3.14 & 23 & 2.71\end{array} \)
Geben Sie den auf diesen Messungen basierenden Wert des Maximum-Likelihood-Schätzers für \( \theta \) an.
Problem/Ansatz:
Bei der c) i) weiß ich nicht, wie man weiter rechnen soll. Auf den Maximum Likelihood Schätzer bei ii) komme ich auch nicht, wie macht man weiter ?
Text erkannt:
\( \begin{array}{l}f_{\theta}(x)=\frac{3}{\theta} x^{2} e^{-\frac{1}{\theta} x^{3}} \\ L(\theta)=\prod \limits_{i=1}^{n} f_{0}(x)=\prod \limits_{i=1}^{n} \frac{3}{\theta} x^{2} e^{-\frac{1}{e} x^{3}} \\ \log (L(\theta))=\sum \limits_{i=1}^{n} \log \left(\frac{3}{\theta} x^{2} e^{-\frac{1}{\theta} x^{3}}\right) \\ =\sum \limits_{i=1}^{n}\left[\log \left(\frac{3}{\theta}\right)+\log \left(x^{2}\right)+\log \left(e^{-\frac{1}{\theta} x^{3}}\right)\right] \\ \log \left(\frac{3}{\theta}\right)=\log (3)-\log (\theta) \\ =\sum \limits_{i=1}^{n}\left[\log (3)-\log (\theta)+2 \cdot \log (x)-\frac{1}{\theta} x^{3}\right] \\\end{array} \)