Aloha :)
Wir betrachten die \(k\)-te Komponente des Gradienten einer Funktion, die nur vom Betrag \(r\) eines Vektors \(\vec r\) abhängt, mit Hilfe der Kettenregel:$$\operatorname{grad}_kf(r)=\frac{\partial}{\partial x_k}f(r)=\frac{\partial f}{\partial r}\cdot\frac{\partial r}{\partial x_k}=f'(r)\cdot\frac{\partial}{\partial x_k}\sqrt{x_1^2+\ldots+x_n^2}$$$$\phantom{\operatorname{grad}_kf(r)}=f'(r)\cdot\frac{2x_k}{2\sqrt{x_1^2+\ldots+x_n^2}}=f'(r)\cdot\frac{x_k}{r}$$Daher lautet der gesamte Gradient:$$\operatorname{grad}f(r)=f'(r)\cdot\begin{pmatrix}x_1/r\\\vdots\\x_n/r\end{pmatrix}=f'(r)\cdot\frac1r\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=f'(r)\cdot\frac1r\cdot\vec r=f'(r)\cdot\vec r^0$$
Deine Funktion \(\phi(r)\) ist ein solcher Fall. Du erhältst den Gradient also einfach, indem du sie nach \(r\) ableitest und mit dem Einheitsvektor \(\vec r^0\) multiplizierst:
$$\operatorname{grad}\phi(r)=\phi'(r)\cdot\vec r^0=-\frac{q}{4\pi\varepsilon_0}\,\frac{1}{r^2}\cdot\vec r^0=-\frac{q}{4\pi\varepsilon_0}\,\frac{\vec r}{r^3}$$
Nun soll die Divergenz dieses Gradienten gebildet werden:$$\Delta\phi(r)=\vec\nabla^2\phi(r)=\vec\nabla(\vec\nabla\phi(r))=\vec\nabla(\operatorname{grad}\phi(r))=\vec\nabla\left(-\frac{q}{4\pi\varepsilon_0}\,\frac{\vec r}{r^3}\right)$$
Dazu nutzen wir die Produkt-Regel mit dem Nabla-Kalkül. Dabei schreibt man die Produktregel hin und markiert das Element, auf das der jeweilige Nabla-Operator wirken soll (wir machen das pink).$$\Delta\phi(r)=\vec\nabla\left(-\frac{q}{4\pi\varepsilon_0}\,\pink{\frac{1}{r^3}}\cdot\vec r\right)+\vec\nabla\left(-\frac{q}{4\pi\varepsilon_0}\,\frac{1}{r^3}\cdot\pink{\vec r}\right)$$
Anschließend stellt man die Ausdrücke nach den Regeln der Vektorrechnung so um, dass der Nabla-Operator direkt vor dem Element steht, auf das er wirken soll. Der \(\vec\nabla\)-Operator wird dabei wie ein normaler Vektor behandelt.$$\Delta\phi(r)=-\frac{q}{4\pi\varepsilon_0}\cdot\vec\nabla\pink{\frac{1}{r^3}}\cdot\vec r-\frac{q}{4\pi\varepsilon_0}\cdot\frac{1}{r^3}\cdot\vec\nabla\pink{\vec r}$$
Erst dann lässt man den Nabla-Operator wirken, führt also die eigentlichen Ableitungen durch. Im ersten Term erkennen wir in \(\pink{\frac{1}{r^3}}\) wieder eine Funktion, die nur vom Betrag \(r\) abhängt, sodass wir die Regel von oben nutzen können:$$\Delta\phi(r)=-\frac{q}{4\pi\varepsilon_0}\cdot\left(\pink{-\frac{3}{r^4}\cdot\vec r^0}\right)\cdot\vec r-\frac{q}{4\pi\varepsilon_0}\cdot\frac{1}{r^3}\cdot\left(\pink{\frac{\partial}{\partial x_1}x_1+\ldots+\frac{\partial}{\partial x_x}x_n}\right)$$$$\phantom{\Delta\phi(r)}=-\frac{q}{4\pi\varepsilon_0}\cdot\left(-\frac{3}{r^3}\right)-\frac{q}{4\pi\varepsilon_0}\cdot\frac{1}{r^3}\cdot n=-\frac{q}{4\pi\varepsilon_0}\cdot\frac{n-3}{r^3}$$
Für \(n=3\) Dimensionen gilt also tatsächlich\(\;\Delta\phi(r)=0\).