Generell: Skizziere die Kurven mit \(=\) anstelle von \(\le\). Das ergibt hier eine gespiegelte Normalparabel und einen Kreis (diese Gleichungen darf man ruhig auswendig kennen). Für \(\le\) überlege Dir auf welcher Seite der Kurve (oben/unten/links/rechts) die Punkte liegen müssen. Kann man auch einfach austesten (einen Punkt (x,y) einsetzen und schauen, liegt er links oder rechts von der Parabel, analog mit dem Kreis, falls nötig).
Dann Schnittmenge skizzieren.
Es hilft in das Integrationsgebiet Linien einzuzeichnen, in denen das Gebiet durchlaufen wird:
\(\int\limits_a^b f(x)\, dx\) heißt: \(x\) läuft von \(a\) bis \(b\), das sind horizontale Linien in \(\R^2\). Wo die beginnt und endet, kannst Du an der Skizze ablesen.
Analog: \(\int\limits_c^d g(y)\, dy\) heißt: \(y\) läuft von \(c\) bis \(d\), das sind vertikale Linien in \(\R^2\). Deren Grenzen hängen hier von \(x\) ab. Man muss also schauen, wo die vertikalen Linien auf die Kurven stoßen. Die Gleichung der Kurven kennst Du aber, also damit den x-y-Zusammenhang.
Dann zum Doppelintegral zusammensetzen. Integrationsfunktion ist hier ja die Konstante 1.