Ich habs jetzt nochmal neu probiert:
\( f(x, y)=\left\{\begin{array}{ll} 0, & \text { falls }(x, y)=(0,0) \\ \frac{x^{2} y}{x^{2}+y^{2}}, & \text { falls }(x, y) \neq(0,0) \end{array}\right. \)
\( \operatorname{Für}(x, y) \neq(0,0) \)
Als Zusammensetzung stetiger Funktionen ist f ebenfalls stetig.
An der Stelle \( (0,0) \) gilt wegen \( 2 x y \leq x^{2}+y^{2} \quad(*) \)
\( |f(x, y)|=\left|\frac{x^{2} y}{x^{2}+y^{2}}\right|=\frac{\left|x^{2} y\right|}{x^{2}+y^{2}}=\frac{|x||2 x y|}{2(x^{2}+y^{2})} \leq \frac{|x|}{2} \xrightarrow{(x, y) \rightarrow 0} 0 \)
Das Sternchen muss über das letzte Ungleichheitszeichen, das bekomme ich hier aber nicht hin, bitte dazu denken.
Im Fall für \( y=0 \) gilt
\( |f(x, y)|=\frac{0}{x^{2}}=0 \leq \frac{|x|}{2} \). Also ist \( f \) auch an der Stelle \( (0,0) \) stetig.
In der anderen Aufgabe soll man die partiellen Ableitungen (einer anderen Funktion) auf Stetigkeit untersuchen. Es gilt \( \frac{\partial f}{\partial x}=\frac{2 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \) und damit
\( \begin{array}{l}\left|\frac{\partial f}{\partial x}(x, y)\right|=\left|\frac{2 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}}\right|=\frac{2|x| y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \leq \frac{2|x| y^{4}\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}}=2|x|y^{4} \\ \xrightarrow{(x, y) \rightarrow(0,0)} 0 .\end{array} \)
Wo sind hier noch Fehler?