Hallo Tanja,
Ich gebe dir mal ein Tipp bei a). Es handelt sich um eine Nullfolge. Versuch mal den Ausdruck 2^(1/n) so nach oben abschätzen und eine majorante Folge zu finden, die auch gegen konvergiert. Tipp: 2^(1/2) ≤ 2 bringt nichts.
Bei b) kannst du z.B. das Wurzelkriterium nutzen.
————
Hier eine Musterlösung von mir, mit der Du es vergleichen kannst.
Lösung:
Ich nutze mal n anstatt k, da ich dem mehr gewöhnt bin und Dich nicht verwirren möchte.
a)
Setze x(n) := (2^(1/n) - 1)^n. Für alle n ≥ 1 gilt 1 < 2^(1/n) ≤ 2. Also gilt 0 < x(n) ≤ 1 und damit |x(n)| = x(n).
Weiter gilt für alle n ≥ 2 die Abschätzung
2^(1/n) -1 ≤ sqrt(2)-1.
Daraus folgt |x(n)| = x(n) = [2^(1/n) - 1]^n ≤ [sqrt(2)-1]^n für alle n ≥ 2.
Da insbesondere 0 < sqrt(2)-1 < 1 gilt, ist
lim [sqrt(2)-1]^n = 0 und damit auch
lim x(n) = 0.
b)
Bilde die Folge (x(n))^(1/n) = 2^(1/n) - 1.
Dann gilt lim 2^(1/n) = exp(ln(2) lim 1/n) = exp(0) = 1, also lim (x(n))^(1/n) = 0 < 1. Nach dem Wurzelkriterium konvergiert die Reihe absolut.