Aufgabe: d) Vom Punkt T (50|-50|100) fällt Licht in Richtung
(-1-а|3-a|a-2). Zeigen Sie, dass ein Lichtstrahl von Punkt T auf den Punkt S fällt.
Problem/Ansatz: ich verstehe nicht, welche Rechnung gefordert wird.
Text erkannt:
Pyramide
Gegeben sei eine gerade quadratische Pyramide, die 100 m breit und 50 m hoch ist.
a) Bestimmen Sie die Gleichungen der Geraden, in denen die vier Pyramidenkanten verlaufen und berechnen Sie deren Schnittpunkt S.
b) Forscher vermuten, dass das Baumaterial über riesige Rampen, die sich längs der eingezeichneten blauen Strecken an die Pyramide lehnten, transportiert wurden. Die erste Rampe hat im Punkt P 10 m Höhe erreicht. Bestimmen Sie P.
c) Die anschließende Rampe soll die gleiche Steigung besitzen. Bestimmen Sie die Gleichung der Geraden PQ und geben Sie den Punkt an, in dem die Rampe die Höhe 15 m erreicht.
d) Vom Punkt T (50|-50|100) fällt Licht in Richtung \( \left(\begin{array}{c}-1-a \\ 3-a \\ a-2\end{array}\right) \). Zeigen Sie, dass ein Lichtstrahl von Punkt T auf den Punkt S fällt.