Aloha :)
Uns ist folgende Funktion vorgegeben$$f(x)=\frac13x^3-3,5x^2+10x$$In der Frage geht es um deren lokale Änderungsrate, also um die Ableitung:$$f'(x)=x^2-7x+10$$
zu a) Um zu prüfen, wo \(f'(x)\) positiv oder negativ ist, zerlegen wir \(f'(x)\) in Linearfaktoren:$$f'(x)=(x-5)\cdot(x-2)$$
Für \(x<2\) sind beide Faktoren negativ, also ist das Produkt \(f'(x)\) positiv.
Für \(x>5\) sind beide Faktoren positiv, also ist das Produkt \(f'(x)\) positiv.
Für \(2<x<5\) ist der 1-te Faktor negativ und der 2-te positiv, also ist \(f'(x)\) negativ.
Zusammengefasst heißt das:$$f'(x)\left\{\begin{array}{ll}>0 & \text{für }x<2\\=0 & \text{für }x=2\\<0 & \text{für } x\in(2;5)\\=0 & \text{für }x=5\\>0 & \text{für }x>5\end{array}\right.$$
zu b) Die stärkste Abnahme der Funktionswerte findest du an den Stellen, wo die Änderungsrate \(f'(x)\) minimal wird. Die stärkste Zunahme der Funktionswerte ist dort, wo die Änderungsrate \(f'(x)\) maximal wird.
Zur Bestimmung der gesuchten Stellen schreiben wir die Ableitung wieder etwas um:$$f'(x)=x^2-7x\pink{+10}=\left(x^2-7x\pink{+\frac{49}{4}}\right)\pink{-\frac94}=\left(x-\frac72\right)^2-\frac94$$Die Ableitung \(f'(x)\) hat kein Maximum, aber ein Minimum im Punkt \(P\left(\frac72\big|-\frac94\right)\).
An der Stelle \(x=\frac72\) ist die Abnahme der Funktionswerte am särksten.
~plot~ x^3/3-3,5*x^2+10x ; x^2-7x+10 ; [[-2|9|-4|11]] ; x=2 ; x=5 ; {3,5|-9/4} ; {3,5|6,416} ~plot~