Aufgabe:
Text erkannt:
(a) Sei \( f:[0,1] \rightarrow(0, \infty) \) stetig und sei
\( M=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1 \text { und } 0 \leq y \leq f(x)\right\} . \)
Zeigen Sie, dass \( M \) Jordan-messbar ist. Zeigen Sie weiter, dass \( \operatorname{vol}_{2}(M) \) durch das eindimensionale Riemann-Integral von \( f \) bestimmt werden kann.
Problem/Ansatz:
Hallo zusammen,
die obige Aufgabe wirft bei mir ein paar Fragen auf. Zum ersten Teil der Aufgabe habe ich mir gedacht, dass man doch argumentieren könnte, dass der Rand dieser Menge eine Vereinigung aus den vier folgenden endlichen Punktmengen ist: Die beiden parallelen Linien im Intervall von [0,1] einmal bei y,z = 0 und einmal bei einem endlichen y- und z-Wert "verbunden" werden diese an den jeweiligen Enden jeweils durch die beschränkte und stetige Funktion f(x) (also insgesamt zwei mal die Funktion f(x)). Daraus würde ja folgen, dass der Rand dieser menge eine Jordan-Nullmenge ist, wodurch diese Jordan-messbar ist. Mir ist klar, dass diese Beschreibung etwas sehr kreativ und unmathematisch wirkt.
Zum zweiten Teil der Aufgabe bin ich mir unsicher, was gefordert ist. Meine erste Intuition wäre hier den Satz von Fubini aufzuschreiben.
Text erkannt:
Satz 1.8-Satz von Fubini. Seien \( X \subset \mathbb{R}^{m} \) und \( Y \subset \mathbb{R}^{n} \) Quader und \( Q=X \times Y \). Ist \( f: Q \rightarrow \mathbb{R} \) eine Riemann-integrierbare Funktion, dann gilt
\( \int \limits_{Q} f(x, y) \mathrm{d} x \mathrm{~d} y=\int \limits_{X}\left(\int \limits_{Y} f(x, y) \mathrm{d} y\right) \mathrm{d} x=\int \limits_{Y}\left(\int \limits_{X} f(x, y) \mathrm{d} x\right) \mathrm{d} y . \)
Aber das wird wahrscheinlich nicht alles sein, könnte mit zeigen gemeint sein, dass nachgewiesen werden muss, dass dieses Doppelintegral den Integral von 0 bis 1 von f(x)dx entspricht?