\( f(x)=\frac{x^{2}-8 x+4}{2 x+2} \) mit \(x≠-1\) \(g(x) = 2x - 2\)
\( \frac{x^{2}-8 x+4}{2 x+2}=2x - 2|\cdot(2x+2 )\)
\( x^{2}-8 x+4=(2x - 2)\cdot(2x+2 )=4x^2-4\) wegen 3.Binom
\( x^{2}-8 x=4x^2-8\) Seitentausch
\( 4x^2-8=x^{2}-8 x\)
\( 3x^2+8x=8|:3\)
\( x^2+\frac{8}{3}x=\frac{8}{3}\) quadratische Ergänzung:
\( x^2+\frac{8}{3}x+(\frac{4}{3})^2=\frac{8}{3}+(\frac{4}{3})^2=\frac{8}{3}+\frac{16}{9}\) 1.Binom:
\( (x+\frac{4}{3})^2=\frac{40}{9}|±\sqrt{~~}\)
1.)
\( x+\frac{4}{3}=\frac{2}{3}\sqrt{10}\)
\(x_1=-\frac{4}{3}+\frac{2}{3}\sqrt{10}\)
2.)
\( x+\frac{4}{3}=-\frac{2}{3}\sqrt{10}\)
\(x_2=-\frac{4}{3}-\frac{2}{3}\sqrt{10}\)