Ich stelle nochmal die Aufgabe, da mein Bild nicht richtig im Text umgewandelt worden ist:
b.) \( f_{1}(x)=\frac{x^{2}-\sin \left(x^{2}+1\right)}{\cos ^{2}(2 x)} \)
\( f_{2}(x)=e^{\cos (x)} \cdot \ln (x), x>0 \)
Quotiontenregel:
\( \begin{array}{l} \left(\frac{u(x)}{v(x)}\right)^{\prime}=\frac{u^{\prime}(x) \cdot v(x)-u(x) \cdot v^{\prime}(x)}{v(x)^{2}} \\ f_{1}(x)=\frac{x^{2}-\sin ^{2}\left(x^{2}+1\right)}{\cos ^{2}(2 x)} \\ u=x^{2}-\sin \left(x^{2}+1\right) \quad u^{\prime}=2 x-2 x \cdot \cos \left(x^{2}+1\right) \\ v=\cos ^{2}(2 x) \quad v^{\prime}=2 \cdot \cos (2 x) \cdot(-\sin (2 x)) \cdot 2=-4 \cdot \cos (2 x) \cdot \sin (2 x) \\ f_{1}^{\prime}(x)=\frac{\left(2 x-2 x \cos \left(x^{2}+1\right)\right) \cdot \cos ^{2}(2 x)-\left(x^{2}-\sin \left(x^{2}+1\right)\right) \cdot(-4 \cos (2 x) \sin (2 x))}{\cos ^{4}(2 x)} \end{array} \)
Produstregel:
\( \begin{array}{l} U^{\prime}(x) \cdot v(x)+U \cdot v^{\prime}(x) \\ f_{2}(x)=e^{\cos (x)} \cdot \ln (x), x>0 \\ U=e^{\cos (x)}, \quad v=\ln (x) \\ U^{\prime}=e^{\cos (x)} \cdot(-\sin (x)), v^{\prime}=\frac{1}{x} \\ f_{2}^{\prime}(x)=\left(e^{\cos (x)} \cdot(-\sin (x))\right) \cdot \ln (x)+\left(e^{\cos (x)}\right) \cdot \frac{1}{x} \end{array} \)