f(x) = 1/25·x^4 - 2/3·x^2 + 9/5
f'(x) = 4/25·x^3 - 4/3·x
f''(x) = 12/25·x^2 - 4/3
Symmetrie
Symmetrie bezüglich der y-Achse
Y-Achsenabschnitt f(0)
f(0) = 9/5 = 1.8
Nullstellen f(x) = 0
1/25·x^4 - 2/3·x^2 + 9/5 = 0
x = -1.840978274 ∨ x = 1.840978274 ∨ x = -3.643825689 ∨ x = 3.643825689
Verhalten im Unendlichen
lim (x→-∞) f(x) = ∞
lim (x→∞) f(x) = ∞
Extremstellen f'(x) = 0
4/25·x^3 - 4/3·x = 0
x = ± 5·√3/3 ∨ x = 0
f(0) = 1.8 --> Hochpunkt
f(± 5·√3/3) = - 44/45 --> Tiefpunkte
Wendestellen f''(x) = 0
12/25·x^2 - 4/3 = 0
x = ± 5/3
f(5/3) = 104/405