lim (x → ∞) (e^{1/x} + 2/x)^{2·x}
lim (x → ∞) e^{2·x·LN(e^{1/x} + 2/x)}
Wir betrachten erstmal nur den Expontenten
lim (x → ∞) 2·x·LN(e^{1/x} + 2/x)
lim (x → ∞) 2·LN(e^{1/x} + 2/x) / (1/x)
L'Hospital --> https://de.wikipedia.org/wiki/Regel_von_L%E2%80%99Hospital
lim (x → ∞) (- 2·(e^{1/x} + 2)/(x·(x·e^{1/x} + 2))) / (- 1/x^2)
lim (x → ∞) 2·x·(e^{1/x} + 2) / (x·e^{1/x} + 2)
lim (x → ∞) 2·(e^{1/x} + 2) / (e^{1/x} + 2/x) = 2·(1 + 2) / (1 + 0) = 6
Jetzt betrachten wir wieder die komplette Potenz.
e^6