(1) Ein einfacher Induktionsbeweis zeigt, dass \(x_n>0\) für alle \(n\geq0\) gilt.
(2) Zeige per Induktion über \(n\), dass \(x_n^2+x_n-1>0\) für alle \(n\geq0\) ist.
Die Aussge gilt offensichtlich für \(n=0\). Zu zeigen ist, dass die Aussage für \(n+1\) gilt, falls sie für ein \(n\geq0\) gilt (Induktionsvoraussetzung).$$x_{n+1}^2+x_{n+1}-1\overset{\small\color{blue}{\text{Def}}}=\left(\frac{1+x_n}{2+x_n}\right)^2+\frac{1+x_n}{2+x_n}-1=\frac{x_n^2+x_n-1}{(2+x_n)^2}\overset{\small\color{blue}{\text{IV}}}>0.$$(3) Zeige, dass die Folge streng monoton fällt. Nach (1) und (2) ist$$x_n-x_{n+1}=x_n-\frac{1+x_n}{2+x_n}=\frac{x_n^2+x_n-1}{2+x_n}>0\Leftrightarrow \boxed{x_n>x_{n+1}}.$$(4) Nach (1) und (3) ist die Folge nach unten beschränkt und streng monoton fallend also konvergent. Der Grenzwert \(c\geq0\) der Folge berechnet sich aus$$c=\lim_{n\to\infty}x_n=\lim_{n\to\infty}x_{n+1}=\lim_{n\to\infty}\frac{1+x_n}{2+x_n}\Rightarrow c=\frac{1+c}{2+c}\Rightarrow\boxed{ c=\frac12(\sqrt{5}-1)}.$$