0 Daumen
372 Aufrufe

Finden Sie alle x ∈ ℝ

1(x+2)21x1 \frac{1}{(x+2)^{2}} \leq \frac{1}{x-1}

3x+4x21 \left|\frac{3 x+4}{x-2}\right| \leq 1

Avatar von

1 Antwort

0 Daumen

1. Aufgabe:

1(x+2)21x1\frac { 1 }{ { \left( x+2 \right) }^{ 2 } } \le \frac { 1 }{ x-1 }1(x+2)2x1\Leftrightarrow 1\le \frac { { \left( x+2 \right) }^{ 2 } }{ x-1 } Fall1 : Fall1:x1<0x<1 x-1<0\Leftrightarrow x<11(x+2)2x1\Rightarrow 1\le \frac { { \left( x+2 \right) }^{ 2 } }{ x-1 }x1(x+2)2=x2+4x+4\Leftrightarrow x-1\ge { \left( x+2 \right) }^{ 2 }={ x }^{ 2 }+4x+4x2+3x+50\Leftrightarrow { x }^{ 2 }+3x+5\le 0x2+3x5\Leftrightarrow { x }^{ 2 }+3x\le -5x2+3x+1,521,525=2,75\Leftrightarrow { x }^{ 2 }+3x+{ 1,5 }^{ 2 }\le { 1,5 }^{ 2 }-5=-2,75(x+1,5)2=2,75\Leftrightarrow { (x+1,5) }^{ 2 }\le =-2,75L1={}\Rightarrow L_{ 1 }=\left\{ \quad \right\}Fall2 : Fall2:x1>0x>1x-1>0\Leftrightarrow x>11(x+2)2x1\Rightarrow 1\le \frac { { \left( x+2 \right) }^{ 2 } }{ x-1 }x1(x+2)2=x2+4x+4 \Leftrightarrow x-1\le { \left( x+2 \right) }^{ 2 }={ x }^{ 2 }+4x+4x2+3x+50\Leftrightarrow { x }^{ 2 }+3x+5\ge 0x2+3x5\Leftrightarrow { x }^{ 2 }+3x\ge -5x2+3x+1,521,525=2,75\Leftrightarrow { x }^{ 2 }+3x+{ 1,5 }^{ 2 }\ge { 1,5 }^{ 2 }-5=-2,75(x+1,5)2=2,75\Leftrightarrow { (x+1,5) }^{ 2 }\ge =-2,75(x+1,5)2=0\Leftrightarrow { (x+1,5) }^{ 2 }\ge =0x=1,5\Leftrightarrow { x }\ge =-1,5L2={xRx>1x=1,5}={xRx>1}\Rightarrow { L }_{ 2 }=\left\{ x\in R|x>1\wedge x\ge =-1,5 \right\} =\left\{ x\in R|x>1 \right\}L=L1L2={}{xRx>1}={xRx>1}\Rightarrow L={ L }_{ 1 }\cup { L }_{ 2 }=\left\{ \quad \right\} \cup \left\{ x\in R|x>1 \right\} =\left\{ x\in R|x>1 \right\}

2, Aufgabe:

3x+4x21\left| \frac { 3x+4 }{ x-2 } \right| \le 1Fall1 : 3x+4x2<0Fall1:\left| \frac { 3x+4 }{ x-2 } \right| <0(3x+4<0x2>0)(3x+4>0x2<0)\Leftrightarrow (3x+4<0\wedge x-2>0)\vee (3x+4>0\wedge x-2<0)(3x<4x>2)(3x>4x<2)\Leftrightarrow (3x<-4\wedge x>2)\vee (3x>-4\wedge x<2)falsch(x>43x<2)\Leftrightarrow falsch\vee (x>-\frac { 4 }{ 3 } \wedge x<2)43<x<2\Leftrightarrow -\frac { 4 }{ 3 } <x<23x+4x21\Rightarrow \left| \frac { 3x+4 }{ x-2 } \right| \le 13x4x21\Leftrightarrow \frac { -3x-4 }{ x-2 } \le 13x4x2\Leftrightarrow -3x-4\ge x-24x2\Leftrightarrow -4x\ge 2x12\Leftrightarrow x\le -\frac { 1 }{ 2 }L1={xR43<x<2x12}={xR43<x12}\Rightarrow { L }_{ 1 }=\left\{ x\in R|-\frac { 4 }{ 3 } <x<2\wedge x\le -\frac { 1 }{ 2 } \right\} =\left\{ x\in R|-\frac { 4 }{ 3 } <x\le -\frac { 1 }{ 2 } \right\}Fall2 : 3x+4x20Fall2:\left| \frac { 3x+4 }{ x-2 } \right| \ge 0(3x+40x2>0)(3x+40x2<0)\Leftrightarrow (3x+4\ge 0\wedge x-2>0)\vee (3x+4\le 0\wedge x-2<0)(3x4x>2)(3x4x<2)\Leftrightarrow (3x\ge -4\wedge x>2)\vee (3x\le -4\wedge x<2)(x43x>2)(x43x<2)\Leftrightarrow (x\ge -\frac { 4 }{ 3 } \wedge x>2)\vee (x\le -\frac { 4 }{ 3 } \wedge x<2)(x>2)(x43)\Leftrightarrow (x>2)\vee (x\le -\frac { 4 }{ 3 } )3x+4x21\Rightarrow \left| \frac { 3x+4 }{ x-2 } \right| \le 13x+4x21\Leftrightarrow \frac { 3x+4 }{ x-2 } \le 1Fall2a : x>2Fall 2a:x>23x+4x21\Rightarrow \frac { 3x+4 }{ x-2 } \le 13x+4x2\Leftrightarrow 3x+4\le x-22x6\Leftrightarrow 2x\le -6x3\Leftrightarrow x\le -3L2a={xRx>2x<3}={}\Rightarrow L_{ 2a }=\left\{ x\in R|x>2\wedge x<-3 \right\} =\left\{ \quad \right\}Fall2b : x43Fall2b:x\le -\frac { 4 }{ 3 }3x+4x21\Rightarrow \frac { 3x+4 }{ x-2 } \le 13x+4x2\Leftrightarrow 3x+4\ge x-22x6\Leftrightarrow 2x\ge -6x3\Leftrightarrow x\ge -3L2b={xRx43x3}={xR3x43}\Rightarrow L_{ 2b }=\left\{ x\in R|x\le -\frac { 4 }{ 3 } \wedge x\ge -3 \right\} =\left\{ x\in R|-3\le x\le -\frac { 4 }{ 3 } \right\}L2=L2aL2b={}{xR3x43}={xR3x43}\Rightarrow { L }_{ 2 }={ L }_{ 2a }\cup { L }_{ 2b }=\left\{ \quad \right\} \cup \left\{ x\in R|-3\le x\le -\frac { 4 }{ 3 } \right\} =\left\{ x\in R|-3\le x\le -\frac { 4 }{ 3 } \right\}L=L1L2={xR43<x12}{xR3x43}={xR3x12}\Rightarrow L={ L }_{ 1 }\cup { L }_{ 2 }=\left\{ x\in R|-\frac { 4 }{ 3 } <x\le -\frac { 1 }{ 2 } \right\} \cup \left\{ x\in R|-3\le x\le -\frac { 4 }{ 3 } \right\} =\left\{ x\in R|-3\le x\le -\frac { 1 }{ 2 } \right\}

Avatar von 32 k

Ein anderes Problem?

Stell deine Frage