(i)
Seien \(x, x'\) aus \(\mathbb{R}^{2}\), dann ist \((x+x')\mapsto (x_{1}+x_{1}'+2, x_{1}+x_{1}'-2(x_{2}+x_{2}'))\neq (x_{1}+2, x_{1}+2x_{2})+(x_{1}*+2, x_{1}'+2x_{2}')=(x_{1}+x_{1}'+4, x_{1}+x_{1}'+2(x_{2}+x_{2}'))\)
also nicht linear
(ii)
Offensichtlich linear \((x+x')\mapsto x_{3}+x_{3}'\) mit Bild \(\mathbb{R}\) Basis \(\left<1\right>\) und Kern \(\left<(1,0,0,0), (0,1,0,0), (0,0,0,1)\right>\)
(iii)
\((x+x')\mapsto (x_{1}+x_{1}')(x_{2}+x_{2}')\neq x_{1}x_{2}+x_{1}'x_{2}'\), also nicht linear
(iv)
\((x+x')\mapsto (x_{2}+x_{2}'-x_{1}-x_{1}', x_{1}+x_{1}'-x_{2}-x_{2}', 0)=(x_{2}-x_{1}, x_{1}-x_{2}, 0)+(x_{2}'-x_{1}', x_{1}'-x_{2}', 0)\)
also linear mit Kern \(\left<(1,1,0)\right>\) und Bild \(\left<(1,-1)\right>\)