Ich interpretiere:
log√2( x ) * log 2 ( x ) * log 2 √2( x ) * log4 ( x ) = 54
als:
log√2( x ) * log 2 ( x ) * log2*√ 2 ( x ) * log4 ( x ) = 54
Es gilt:
loga ( x ) = ln ( x ) / ln ( a )
Also:
log√2( x ) * log 2 ( x ) * log 2 √2( x ) * log4 ( x ) = 54
<=> [ ln ( x ) / ln ( √ ( 2 ) ) ] * [ ln ( x ) / ( ln ( 2 ) ] * [ ln ( x ) / ln ( 2 * √ 2 ) ] * [ ln ( x ) / ( ln ( 4 ) ] = 54
<=> ( ln ( x ) ) 4 / ( ln ( √ 2 ) * ln ( 2 ) * ln ( 2 * √ 2 ) * ln ( 4 ) ) = 54
<=> ( ln ( x ) ) 4 = 54 * ( ln ( √ 2 ) * ln ( 2 ) * ln ( 2 * √ 2 ) * ln ( 4 ) )
<=> ln ( x ) = ±4√ ( 54 * ( ln ( √ 2 ) * ln ( 2 ) * ln ( 2 * √ 2 ) * ln ( 4 ) ) )
<=> ln ( x ) = ±4√ ( 54 * ( ln ( √ 2 ) * ln ( 2 ) * ln ( 2 * √ 2 ) * ln ( 4 ) ) )
<=> ln ( x ) = - 2,079441541679... oder ln ( x ) = 2,079441541679...
<=> x = e- 2,079441541679... oder x = e- 2,079441541679...
<=> x = 1 / 8 oder x = 8