sin(x)/sin(x + y) = z
sin(x) = z*sin(x + y)
Additionstheorem für sin(x + y) anwenden
sin(x) = z*(sin(x)*cos(y) + sin(y)*cos(x))
Mit cos(x) = √(1 - sin2(x)) folgt
sin(x) = z*(sin(x)*cos(y) + sin(y)*√(1 - sin2(x)))
Es sei t = sin(x)
t = z*(t*cos(y) + sin(y)*√(1 - t2)) = z*t*cos(y) + z*sin(y)*√(1 - t2))
t - z*t*cos(y) = z*sin(y)*√(1 - t2))
t*(1 - z*cos(y)) = z*sin(y)*√(1 - t2))
t/(√(1 - t2)) = z*sin(y)/(1 - z*cos(y)) = A |quadrieren
t2/(1 - t2) = A2
t2 = A2*(1 - t2) = A2 - A2*t2 -> t2 = A2/(1 + A2) -> t = ±√(A2/(1 + A2)) = sin(x)