A=(-6/4), B=(6/0),C=(2/8)
AB = [12, -4]
AC = [8, 4]
|AB| = √(12^2 + 4^2) = 4·√10
|AC| = √(8^2 + 4^2) = 4·√5
∠α = ARCCOS((AB * AC) / (|AB| * |AC|))
∠α = ARCCOS([12, -4]·[8, 4] / (4·√10 · 4·√5)) = 45°
A = 1/2 * |AB| * |AC| * SIN(α) = 1/2 * 4·√10 * 4·√5 * SIN(45°) = 40 FE