Der Punkt \( C(r \mid s) \) mit \( 0 \leq r \leq 3 \) liegt auf dem Graphen einer Funktion \( f \). der Punkt \( N(3 \mid 0) \) ist fest gewählt. \( C \) und \( N \) sind Eckpunkte eines Rechtecks.
a) Die Funktion \( f \) ist gegeben durch \( f(x)=1+\frac{1}{5} x^{3} \) (s. Bild 17/4). Zeigen Sie, dass für den Flächeninhalt \( A \) des Rechtecks gilt:
\( A(r)=-\frac{1}{5} r^{4}+\frac{3}{5} r^{3}-r+3 \)
Ermitteln Sie den maximalen Flächeninhalt des Rechtecks für \( 0 \leq r \leq 3 \)
b) Bearbeiten Sie diese Aufgabe, wenn \( f \) durch die Funktionsgleichung \( f(x)=1+\frac{1}{3} x^{3} \) bzw. \( f(x)=1+\frac{1}{9} x^{3} \) gegeben ist.