\(-2x^4+6x^2-3=0 \)
Lösung ohne Substitution:
\(-2x^4+6x^2=3 |:(-2) \)
\(x^4-3x^2=-1,5 \)
\(x^4-3x^2+1,5^2=-1,5+1,5^2 \)
\((x^2-1,5)^2=\frac{3}{4} | ±\sqrt{~~} \)
1.)
\(x^2-1,5=\frac{1}{2}\sqrt{3} \)
\(x^2=\frac{3}{2}+\frac{1}{2}\sqrt{3} | ±\sqrt{~~} \)
\(x_1=\sqrt{\frac{3}{2}+\frac{1}{2}\sqrt{3}}\)
\(x_2=-\sqrt{\frac{3}{2}+\frac{1}{2}\sqrt{3}}\)
2.)
\(x^2-1,5=-\frac{1}{2}\sqrt{3} \)
\(x^2=\frac{3}{2}-\frac{1}{2}\sqrt{3} | ±\sqrt{~~} \)
\(x_3=\sqrt{\frac{3}{2}-\frac{1}{2}\sqrt{3}} \)
\(x_4=-\sqrt{\frac{3}{2}-\frac{1}{2}\sqrt{3}} \)