a) $$\lim_{n \rightarrow\infty} \frac{4n}{8n-5}=\lim_{n \rightarrow\infty}\frac{\not n}{\not n}\frac{4}{8-\frac{5}{n}}=\frac{4}{8}=\frac{1}{2} $$
b) $$ \begin{aligned} \left|\frac{4n}{8n-5}-\frac{1}{2} \right|&<\frac{1}{500} \\ \left|\frac{5}{16n-10} \right|&<\frac{1}{500}\\ 5&<\frac{16n-10}{500}\\2500&<16n-10\\n&>\frac{2510}{16} \end{aligned} $$
Für jedes \(n>156\) gilt \(\left|\frac{4n}{8n-5}-\frac{1}{2} \right|<\frac{1}{500}\)