\(|x|+|2-x| = 4\)
\(\sqrt{x^2}+\sqrt{(2-x)^2} = 4 |\red{^{2}}\)
\(x^2+(2-x)^2+2\sqrt{x^2}\cdot \sqrt{(2-x)^2} = 16 \)
\(x^2+4-4x+x^2+2\sqrt{x^2(2-x)^2} = 16 \)
\(\sqrt{x^2(2-x)^2} = 6 -x^2+2x |\red{^{2}}\)
\(x^2(2-x)^2 = (6 -x^2+2x )^2\)
\((2x-x^2)^2 = (6 -x^2+2x )^2\)
\((2x-x^2)^2 - (6 -x^2+2x )^2=0\) 3.Binom:
\([(2x-x^2) +(6 -x^2+2x )][(2x-x^2) -(6 -x^2+2x )]=0\) Satz vom Nullprodukt:
1.)
\(2x-x^2 +3 =0\)
\(x_1=-1\)
\(x_2=3\)
Probe, da Quadrieren keine Äquivalenzumformung ist:
\(|-1|+|2+1| = 4\)✓
\( | 3 |+| 2-3 | = 4\)✓
2.)
\(2x-x^2 -6 +x^2-2x )]=0\)
\(0=0\)