Kann ich Folgendes so argumentieren?
Mir ist bewusst, dass dies auch nur gilt, wenn a und b konvergente Folgen sind.
lim (a*b) = lim a * lim b .
daher ist:
$$ \lim _ { n \rightarrow \infty } \left( 1 - \frac { 1 } { n ^ { 2 } } \right) ^ { 3 } = \lim _ { n \rightarrow \infty } \left( 1 - \frac { 1 } { n ^ { 2 } } \right) * \lim _ { n \rightarrow \infty } \left( 1 - \frac { 1 } { n ^ { 2 } } \right) * \lim _ { n \rightarrow \infty } \left( I - \frac { 1 } { n ^ { 2 } } \right) = \left( \lim _ { n \rightarrow \infty } \left( 1 - \frac { 1 } { n ^ { 2 } } \right) \right) ^ { 3 } = \left( \lim _ { n \rightarrow \infty } ( 1 ) - \lim _ { n \rightarrow \infty } \left( \frac { 1 } { n ^ { 2 } } \right) \right) ^ { 3 } = ( 1 - 0 ) ^ { 3 } = 1 ^ { 3 } = 1 $$