\(g(t) = -2t^4 - 3,5t^2 + 18\)
Nullstellen ohne Substitution:
\( -2t^4 - 3,5t^2 + 18=0 |:(-2)\)
\( t^4 + 1,75t^2 -9=0 |+9\)
\( t^4 + \frac{7}{4}t^2 =9\) quadratische Ergänzung:
\( t^4 + \frac{7}{4}t^2+(\frac{7}{8})^2 =9+(\frac{7}{8})^2\) 1.Binom:
\(( t^2 +\frac{7}{8})^2= \frac{625}{64} |±\sqrt{~~}\)
1.)
\( t^2 +\frac{7}{8}= \frac{25}{8} \)
\( t^2 = \frac{9}{4} |±\sqrt{~~} \)
\( t_1 = \frac{3}{2} \)
\( t_2 = -\frac{3}{2} \)
Das sind die beiden Lösungen ∈ ℝ
2.)
\( t^2 +\frac{7}{8}= -\frac{25}{8} \)
\( t^2 = - 4 =4i^2 |±\sqrt{~~} \)
\( t^2 = - 4 =4i^2 |±\sqrt{~~} \)
\( t_3 =2i \)
\( t_4 =-2i \)
Das sind die beiden Lösungen ∉ ℝ