Funktion und Ableitungen
f(x) = x^3 / (18 - 2·x^2)
f'(x) = (54·x^2 - 2·x^4) / (18 - 2·x^2)^2
f''(x) = (72·x^3 + 1944·x) / (18 - 2·x^2)^3
Symmetrie
f(-x) = (- x)^3 / (18 - 2·(- x)^2) = - x^3/(2·(9 - x^2)) = - f(x) --> Punktsymmetrie zum Ursprung
Asymptote
f(x) = x^3 / (18 - 2·x^2) = - 1/2·x + 9·x/(18 - 2·x^2) --> y = - 1/2·x
Polstellen
18 - 2·x^2 = 0
x = ± 3
Verhalten an den Grenzen des Definitionsbereichs
lim (x → - ∞) f(x) = ∞
lim (x → - 3-) f(x) = ∞
lim (x → - 3+) f(x) = - ∞
lim (x → 3-) f(x) = ∞
lim (x → 3+) f(x) = - ∞
lim (x → ∞) f(x) = - ∞
Y-Achsenabschnitt f(0)
f(0) = 0
Nullstellen f(x) = 0
x^3 = 0
x = 0
Extrempunkte f'(x) = 0
54·x^2 - 2·x^4 = 0
x = 0 ∨ x = ± 3·√3 = ± 5.196
f(0) = 0 --> Sattelpunkt
f(3·√3) = - 9·√3/4 = - 3.897 --> HP(5.196 | - 3.897)
f(- 3·√3) = 9·√3/4 = 3.897 --> TP(- 5.196 | 3.897)
Wendepunkte f''(x) = 0
72·x^3 + 1944·x = 0
x = 0
f(0) = 0 --> Sattelpunkt