$$ f'(x)=\lim_{h \rightarrow 0}\frac{\frac{2}{x+h}-\frac{2}{x}}{h}= \lim_{h \rightarrow 0}\frac{\frac{2x-2(x+h)}{(x+h)x}}{h}=\lim_{h \rightarrow 0}\frac{\frac{-2h}{x^2+hx}}{h}=\lim_{h \rightarrow 0} \frac{-2h}{x^2+hx}\frac{1}{h}=\lim_{h \rightarrow 0}\frac{-2}{x^2+hx}=-\frac{2}{x^2}$$
$$f'(2)=\lim_{h \rightarrow 0}\frac{\frac{2}{2+h}-\frac{2}{2}}{h}= \lim_{h \rightarrow 0}\frac{\frac{2\cdot2-2(2+h)}{(2+h)2}}{h}=\lim_{h \rightarrow 0}\frac{\frac{-2h}{2^2+2h}}{h}=\lim_{h \rightarrow 0} \frac{-2h}{2^2+2h}\frac{1}{h}=\lim_{h \rightarrow 0}\frac{-2}{2^2+2h}=-\frac{2}{2^2}=-\frac{1}{2}$$