εf,x = f ' (x) * x / f(x) = (1+2x)*x / ((x+x^2) =   (1+2x)*x / (x*(1+x))  =   (1+2x) / (1+x) = (q+x + x) / (1+x) = 1 + x/(1+x)
bei g(x) = (x-1)/(x+1) ist g ' (x) =( (x+1)*1  -  (x-1) * 1 ) / (x+1)^2   Quotientenregel
= 2/ (x+1)^2
also εg,x  = g ' (x) * x / g(x) =  ( 2/ (x+1)^2  ) * x  /  (  (x-1)/(x+1) )
= ( 2 * x * (x+1) ) /  ((x+1)^2 * (x-1) )
= ( 2 * x *) /  ((x+1) * (x-1) ))
=   ( 2 * x *) /  (x^2 -1)