0 Daumen
1,4k Aufrufe


ich habe den Bruch $$ { \left( \frac { -a+bj }{ b+aj }  \right)  }^{ 4 } $$


Wenn ich zuerst versuche den Bruch aufzulösen durch die komplex konjuierte Erweiterung des Nenners komme ich auf

$$ { \left( \frac { { a }^{ 2 }j-{ b }^{ 2 }j }{ { a }^{ 2 }+{ b }^{ 2 } }  \right)  }^{ 4 } $$

Das jetzt zu potenzieren bzw. zu ausmultiplizieren wäre sehr kompliziert.


Also dachte ich vielleicht potenziere ich zuerst und löse dann die divison.. Aber selbst wenn ich nur das qaudrat vom Zähler nehme steht da schon $$ { \left( { a }^{ 2 }-{ b }^{ 2 }-2abj \right)  }^{ 2 } $$


Wie löse ich das alsoamBesten?

Avatar von

3 Antworten

0 Daumen

(-a + b·i)/(b + a·i) 

= (-a + b·i)(b - a·i)/((b + a·i)(b + a·i))

= (a^2·i + b^2·i)/(b^2 + a^2)

= i

Avatar von 487 k 🚀

oh Gott..ich kann im Zähler a2+b2 einfach ausklammern und dann wegkürzen..


Oh man ich mach so viele Flüchtigkeitsfehler.. das wird übel morgen^^

Üben, üben, üben                    

Du hattest ja bereits vergessen ein i * i in ein -1 zu verwandeln und hattest deswegen im Zähler a^2 - b^2.

0 Daumen

Hi,
$$ \frac{-a+bj}{b+aj} = \frac{-ab +a^2j+b^2j+ab}{a^2+b^2} = j $$ Und \( j^4 = 1 \)

Avatar von 39 k
0 Daumen

Du möchtest das kürzer machen? Das kannst du nur, wenn du ganz genau auf die Vorzeichen achtest.

( (-a+bj )/( b+aj))^4         |oben j ausklammern 

=( j (ja+b )/( b+aj))^4

= (j)^4

= 1.

Avatar von 162 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community