∫ e^{2·x}·√(e^{2·x - 1}) dx
= ∫ e·e^{2·x - 1}·√(e^{2·x - 1}) dx
Substitution:
z = 2·x - 1
dz = 2 dx
dx = dz/2
= ∫ e·e^z·√(e^z) dz/2
= e/2·∫ e^z·e^{z/2} dz
= e/2·∫ e^{3/2·z} dz
Integrieren
e/2·e^{3/2·z} / (3/2)
e/3·e^{3/2·z}
Resubstitution: z = 2·x - 1
= e/3·e^{3/2·(2·x - 1)}
= e/3·e^{3·x - 3/2}
= 1/3·e^{3·x - 0.5}