Hallo,
Beweis mit vollständiger Induktion über \(n\geq 1\):
1. Für \(n=1\) ist die Behauptung trivialerweise wahr.
2. Ind.annahme: sei die Behauptung für ein \(n\geq 1\) bereits bewiesen.
3. Induktionsschritt:
Es sei \(\lambda_1,\cdots,\lambda_{n+1}\) paarweise verschiedene Eigenwerte von \(f\) und $$c_1v_1+\cdots+c_nv_n+c_{n+1}v_{n+1}=0\quad(1)$$ mit Skalaren \(c_1,\cdots,c_{n+1}\).
Wenn wir hierauf \(f\) anwenden, erhalten wir$$c_1\lambda_1v_1+\cdots+c_n\lambda_nv_n+c_{n+1}\lambda_{n+1}v_{n+1}=0\quad(2)$$Nun multiplizieren wir die Gleichung \((1)\) mit \(\lambda_{n+1}\)
und erhalten$$c_1\lambda_{n+1}v_1+\cdots+c_n\lambda_{n+1}v_n+c_{n+1}\lambda_{n+1}v_{n+1}=0\quad(3)$$
Subtrahiert man \((2)\) von \((3)\), so ergibt sich$$c_1(\lambda_{n+1}-\lambda_1)v_1+\cdots+c_n(\lambda_{n+1}-\lambda_n)v_n=0$$Nach Induktionsannahme sind \(v_1,\cdots,v_n\) linear unabhängig, woraus
$$c_1(\lambda_{n+1}-\lambda_1)=\cdots=c_n(\lambda_{n+1}-\lambda_n)=0$$folgt, also wegen der paarweisen Verschiedenheit der \(\lambda_i\):$$c_1=\cdots=c_n=0$$\(c_{n+1}=0\) ergibt sich dann aus \((1)\).
Gruß ermanus