Der konventionelle Lösungsweg wäre
f ( x ) = a * ( x + d )^2 + e
f ( 4 ) = a * ( 4 + d )^2 + e = 0
f ( -10 ) = a * ( -10 + d )^2 + e = 0
f ( 6 ) = a * ( 6 + d )^2 + e = 8
a * ( 4 + d )^2 + e = 0
a * ( -10 + d )^2 + e = 0
a * ( 6 + d )^2 + e = 8
Gleichung 2 von Gleichung 1 abziehen
a * ( 4 + d )^2 - a * ( -10 + d)^2 = 0
a * ( 4 + d )^2 = a * ( -10 + d)^2 | : a , da a <> 0
( 4 + d )^2 = ( -10 + d)^2
16 + 8d + d^2 = 100 - 20d + d^2
28d = 84
d = 3
a * ( 4 + d )^2 + e = 0
a * ( 6 + d )^2 + e = 8
a * ( 4 + 3 )^2 + e = 0
a * ( 6 + 3 )^2 + e = 8
a * 49 + e = 0
a * 81 + e = 8 | abziehen
------------------
49a - 81a = -8
32a = -8
a = -1/4
f ( 4 ) = a * ( 4 + d )^2 + e = 0
-1/4 * ( 4 + 3 )^2 + e = 0
-1/4 * 49 + e = 0
e = - 49/4 = -12.25
f ( x ) = 1/4 * ( x + 3 )2 - 12.25