Aufgabe:
Welche Lösungsmengen \( \mathcal{L}_{i} \) sind Teilmengen der Lösungsmenge \( \mathcal{L} \) des folgenden Gleichungssystems? Beweisen Sie Ihre Aussagen.
\( \begin{aligned} 2 x_{1}-x_{2}-3 x_{3} &=-2 \\ -4 x_{1}+2 x_{2}+6 x_{3} &=4 \\ 6 x_{1}-3 x_{2}-9 x_{3} &=-6 \end{aligned} \)
a) \( \mathcal{L}_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\left(x_{1}, x_{2}, x_{3}\right)=(0,2,0)+\lambda_{1}(1,2,0)+\lambda_{2}(0,-3,1), \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\} \)
b) \( \mathcal{L}_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\left(x_{1}, x_{2}, x_{3}\right)=(1,1,1)+\lambda_{1}(1,-1,1)+\lambda_{2}(1,5,-1), \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\} \)
c) \( \mathcal{L}_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\left(x_{1}, x_{2}, x_{3}\right)=(2,0,2)+\lambda_{1}(1,5,-1), \lambda_{1} \in \mathbb{R}\right\} \)