Nein, das geht nicht, denn 1 ist offenbar keine Nullstelle des Ergebnisquotienten der ersten PD durch (x-1).
Dennoch ist die Idee gut, denn wenn bei der ersten PD durch (x+1) dividiert worden wäre, so könnte man feststellen, dass x=-1 auch Nullstelle des Quotienten ist, und noch einmal durch (x+1) dividieren.
Wenn man, wie in der Antwort von Lu beschrieben, schon vorher weiß, dass x=-1 eine doppelte Nullstelle des Dividenden ist, kann man auch gleich durch x^2+2x+1=(x+1)^2 dividieren und so eine PD sparen.