f ( x ) = a * e^{-x^2}
t ( x ) = -2 * x + b
Tangente
f ( x ) = t ( x )
f ´( x ) = t ´( x )
für x = 1
f ( x ) = a * e^{-x^2}
f ´( x ) = a * e^{-x^2} * ( -2x )
t ( x ) = -2 * x + b
t ´( x ) = -2
a * e^{-1^2} = -2 * 1 + b
a * ( e^{-1} = -2 + b
a * e^{-x^2} * ( -2x ) = -2
a * e^{-1} * ( -2 ) = -2
a = e
a * ( e^{-1} = -2 + b
e * ( e^{-1} = -2 + b
1 = -2 + b
b = 3
f ( x ) = e * e^{-x^2}
t ( x ) = -2 * x + 3
Probe
f ( 1 ) = t ( 1 )
e * e^{-x^2} = -2 * x + 3
e * e^{-1^2} = -2 * 1 + 3
1 = 1
f ´( 1 ) = t ´( 1 )
e * e^{-1^2} * ( -2 * 1 ) = -2
1 ( -2 ) = -2