Hi, das beweist man am besten durch Induktion. Der Induktionsanfang ist klar, da gilt
$$ (1) \quad (1-x)^0 = 1 \le \frac{1}{1+0 \cdot x} = 1 $$
Nun ist zu beweisen, das gilt
$$ (2) \quad (1-x)^{n+1} \le \frac{1}{1+(n+1)x} $$
Es gilt wegen der Induktionsvoraussetzung
$$ (3) \quad (1-x)^{n+1} \le \frac{1}{1+nx}(1-x) $$
Die rechte Seite von (3) muss nun kleiner als \( \frac{1}{1+(n+1)x} \) sein, dann ist der Beweis erbracht.
Das ist aber äquivalent zu
$$ (4) \left[ 1 + (n+1)x \right] (1-x) \le 1 +nx $$
Die Ungleichung (4) gilt was man durch ausmultiplizieren nachrechnen kann und wegen \( 1 + nx \ge 0 \) Damit ist der Bweis fertig.