f(x) = e^x·(t - x)
f'(x) = - e^x·(x - t + 1)
f''(x) = - e^x·(x - t + 2)
Y-Achsenabschnitt f(0)
f(0) = t --> (0 | t)
Nullstellen f(x) = 0
e^x·(t - x) = 0 --> x = t --> (t | 0)
Extrempunkte f'(x) = 0
- e^x·(x - t + 1) = 0 --> x = t - 1
f''(t - 1) = - e^{t - 1} --> HP
f(t - 1) = e^{t - 1} --> HP(t - 1 | e^{t - 1})
Wendepunkte f''(x) = 0
- e^x·(x - t + 2) = 0 --> x = t - 2
f(t - 2) = 2·e^{t - 2} --> WP(t - 2 | 2·e^{t - 2})