[LN(√((x + 1)/(x - 1)))]' = 1/√((x + 1)/(x - 1)) · [√((x + 1)/(x - 1))]'
[√((x + 1)/(x - 1))]' = 1/(2·√((x + 1)/(x - 1))) · [(x + 1)/(x - 1)]'
[(x + 1)/(x - 1)]' = ([x + 1]'·(x - 1) - (x + 1)·[x - 1]') / (x - 1)^2
[(x + 1)/(x - 1)]' = ((x - 1) - (x + 1)) / (x - 1)^2
[(x + 1)/(x - 1)]' = (x - 1 - x - 1) / (x - 1)^2
[(x + 1)/(x - 1)]' = - 2 / (x - 1)^2
Einsetzen
[√((x + 1)/(x - 1))]' = 1/(2·√((x + 1)/(x - 1))) · [(x + 1)/(x - 1)]'
[√((x + 1)/(x - 1))]' = 1/(2·√((x + 1)/(x - 1))) · (- 2 / (x - 1)^2)
[√((x + 1)/(x - 1))]' = √((x + 1)/(x - 1)) / ((x + 1)·(1 - x))
Einsetzen
[LN(√((x + 1)/(x - 1)))]' = 1/√((x + 1)/(x - 1)) · [√((x + 1)/(x - 1))]'
[LN(√((x + 1)/(x - 1)))]' = 1/√((x + 1)/(x - 1)) · √((x + 1)/(x - 1)) / ((x + 1)·(1 - x))
[LN(√((x + 1)/(x - 1)))]' = 1/((x + 1)·(1 - x))
Man könnte den Term auch vorher etwas vereinfachen. Dann spart man sich die Wurzel
LN(√((x + 1)/(x - 1))) = 1/2·LN((x + 1)/(x - 1))