f(x) = LN((x + 2)/√(x^2 - 4))
= LN(x + 2) - LN(√(x^2 - 4))
= LN(x + 2) - LN((x^2 - 4)^{1/2})
= LN(x + 2) - 1/2·LN(x^2 - 4)
f'(x) = 1/(x + 2) - 1/2·1/(x^2 - 4)·(2·x)
f'(x) = 1/(x + 2) - x/(x^2 - 4)
f'(x) = (x - 2)/((x + 2)·(x - 2)) - x/(x^2 - 4)
f'(x) = (x - 2)/(x^2 - 4) - x/(x^2 - 4)
f'(x) = -2 / (x^2 - 4)