Ich beschäftige mich zurzeit mit folgender Aufgabe:
Ein Hersteller liefert Zweierpackungen eines Produktes. Für jede Packung mit mindestens einem fehlerhaften Produkt muss er den Kaufpreis zurückerstatten. (Eine mögliche Wiederverwertung einzelner Produkte werde nicht berücksichtigt.) Die Herstellung einer Zweierpackung kostet 2.00 Euro. Die Wahrscheinlichkeit für die Produktion eines fehlerfreien Produktes betrage (unabhängig von anderen Produkten) 0.90. Der Preis (in Euro), den der Hersteller verlangen muss, um einen erwarteten Gewinn pro Zweierpackung von 0.48 zu erzielen, liegt im folgenden Intervall:
A) [0 : 3.02] B) (3.02 : 3.08] C) (3.08 : 3.14] D) (3.14 : ∞)
Ich habe die Gewinnformel benutzt und sie nach dem Stückpreis aufgelöst.
Stückerlös(Stückpreis) = Gewinn + Kosten = 0.48 +2.00 = 2.48
Somit müsste der Hersteller einen Preis von 2.48 verlangen.
Allerdings ist meine Lösung nicht ganz korrekt. Die richtige Preis befindet sich im Intervall B.
Ich weiß leider nicht wie ich die anderen Informationen zu der Wahrscheinlichkeit, der Rückerstattung des Preises und dem Erwartungswert in die Lösung miteinbeziehen kann. Ich stehe da völlig auf dem Schlauch.
Wäre super, wenn mir jemand damit helfen könnte.